

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 48 (2007) 2275-2277

The first application of an imidazole *o*-quinodimethane in Diels–Alder reactions leading to the synthesis of benzimidazoles

Constantinos Neochoritis, Despina Livadiotou, Julia Stephanidou-Stephanatou and Constantinos A. Tsoleridis*

Department of Chemistry, Laboratory of Organic Chemistry, University of Thessaloniki, 54124 Macedonia, Greece

Received 15 December 2006; revised 25 January 2007; accepted 31 January 2007 Available online 3 February 2007

Abstract—An efficient procedure for the generation of the imidazole-4,5-quinodimethane intermediate 4 from 2-bromo-4,5-bis(bromomethyl)imidazole derivative 3 in boiling toluene in the presence of 18-crown-6 is described. *o*-Quinodimethane 4 was captured for the first time by several symmetrically and unsymmetrically substituted dienophiles to afford the corresponding Diels–Alder benzimidazole adducts.

© 2007 Elsevier Ltd. All rights reserved.

The heterocyclic analogs of *o*-quinodimethane (*o*-QDM) are of considerable interest both from a theoretical point of view and for their potential in organic synthesis¹ as useful dienes. Their use in annulations of aromatic systems has now acquired practical importance and has been exploited in efficient syntheses of a wide range of polycyclic natural products.² The most widely used routes to these heterocyclic *o*-QDMs involve flash vacuum pyrolysis,³ thermal extrusion of sulfur dioxide from heteroaromatic fused 3-sulfolenes,⁴ and 1,4-elimination of suitable precursors.⁵

Flash pyrolytic 1,4-elimination requires very harsh reaction conditions resulting in the formation of polymeric products, thus precluding trapping of the *o*-QDM intermediates except in the most stable cases. However, heterocyclic fused 3-sulfolenes have been shown to be useful precursors for generation and trapping⁴ of heterocyclic *o*-QDMs, although sometimes fairly harsh reaction conditions are required and the reagents are heated to high temperatures, up to 200 °C. Similarly, several heterocyclic *o*-QDMs have been generated by 1,4-elimination in solution and are efficiently trapped by various dienophiles to afford⁵ the corresponding adducts in good yields. Although a substantial number of heterocyclic *o*-QDMs have been explored, very recently some new methods for their preparation involving MW irradiation,⁶ allenylanilines,⁷ and ene-bis(sulfinylallenes)⁸ have appeared in the literature. Concerning the imidazole *o*-QDM, although the formation of the 1-methylimidazole *o*-QDM by flash pyrolysis has been reported,⁹ all attempts at its trapping with dienophiles were unsuccessful. Moreover, imidazole based heterocyclic molecules play important roles in various biochemical processes.¹⁰ The imidazolyl moiety is used as a building block in developing new drugs,^{10b,11} and also has wide-ranging applications in organometallic catalysis,¹² in asymmetric catalysis¹³ and in coordination chemistry.¹⁴ There are several reports of the synthesis and functionalization of the imidazole moiety.¹⁵ For all these reasons the synthesis and Diels–Alder reactions of an imidazole *o*-quinodimethane were undertaken.

Our synthetic approach is depicted in Scheme 1. To generate the required imidazole *o*-QDM we envisaged NBS bromination of 1-phenylmethylamino-4,5-dimethylimidazole 1, followed by the formation of the imidazole *o*-QDM through 1,4-elimination, and trapping with various symmetrical and unsymmetrical dienophiles. However, NBS bromination either in the presence of light or in the presence of radical initiators [(PhCOO)₂ or AIBN] led preferentially to 1-(4-bromophenyl)-2-bromo-4,5dimethylimidazole 2. Thus, bromination was performed with 6.0 equiv of NBS under reflux in CCl₄ solution in the presence of a 200 W light bulb for 1 h, whereupon

Keywords: Imidazole *o*-quinodimethanes; Benzimidazoles; Diels–Alder reactions.

^{*}Corresponding author. Tel.: +30 2310 997865; fax: +30 2310 997679; e-mail: tsolerid@chem.auth.gr

^{0040-4039/\$ -} see front matter @ 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2007.01.162

Scheme 1. Bromination of compound 1, preparation and Diels-Alder trapping of *o*-QDM 4 with symmetrically and unsymmetrically substituted dienophiles.

the tetrabromo-derivative **3**, a suitable *o*-QDM precursor was formed, in 60% yield.

Due to the instability of 3 on silica gel, it was not purified but instead was treated directly with sodium iodide in boiling toluene in the presence of 18-crown-6 to afford imidazole o-QDM 4, which was reacted in situ with dienophiles. From the reaction with dimethyl acetylenedicarboxylate, a mixture of the fully and the partially aromatized benzimidazole cycloadducts 5 and 6 in 35% and 44% yields, respectively, were obtained.¹⁶ Using similar conditions, o-QDM 4 reacted with the symmetrical dienophiles N-methyl- and N-phenylmaleimide, whereupon the initially formed Diels-Alder cycloadducts were not isolated but, under the reaction conditions, underwent subsequent oxidation to give aromatized products 7 and 8, in 72% and 75% yields, respectively¹⁷ (Scheme 1). A note should be made to the change of solvent from DMF to toluene in the presence of 18-crown-6, since it was found to give much better yields.^{5e}

To further extend the scope of this method the reactions of **4** with the asymmetrically substituted dienophiles methyl acrylate, methyl propiolate, and methyl vinyl ketone were studied. In all cases, inseparable mixtures of the two possible regioisomers **9a** and **9b** (ratio 60:40), **11a** and **11b** (70:30) and **12a** and **12b** (50:50) were isolated in 53%, 24%, and 55% yields, respectively. However, in the case of methyl acrylate and methyl propiolate, the regioisomeric fully aromatized compounds, **10a** and **10b**, (24% yield, 60:40 ratio and 24% yield, 70:30 ratio) were also formed.

In conclusion, an efficient route for the synthesis of imidazole *o*-quinodimethane **4** and its in situ trapping, for the first time, with dienophiles yielding benzimidazole derivatives has been described. Further applications and theoretical investigations on the observed regioselectivity are being studied.

References and notes

- (a) Segura, J. L.; Martin, N. Chem. Rev. 1999, 99, 3199– 3246; (b) Collier, S. J.; Storr, R. C. Prog. Heterocycl. Chem. 1998, 10, 25–43.
- (a) Nicolaou, K. C.; Gray, D. L. F. J. Am. Chem. Soc. 2004, 126, 607–612; (b) Oumzil, K.; Ibrahim-Ouali, M.; Santelli, M. Steroids 2006, 71, 886–901; (c) Barluenga, J.; Garcia-Garcia, P.; Fernandez-Rodriguez, M. A.; Aguilar, E.; Merino, I. Angew. Chem., Int. Ed. 2005, 44, 5875–5878.
- 3. Potter, A. J.; Storr, R. C. Tetrahedron Lett. 1994, 35, 5293–5296.
- (a) Chaloner, L. M.; Crew, A. P. A.; O' Neill, P. M.; Storr, R. C. *Tetrahedron* **1992**, *48*, 8101–8116; (b) Ko, C. W.; Chou, T. S. *J. Org. Chem.* **1998**, *63*, 4645–4653; (c) Liu, W. D.; Chi, C. C.; Pai, I. F.; Wu, A. T.; Chung, W. S. *J. Org. Chem.* **2002**, *67*, 9267–9275; (d) Govaerts, T. C.; Vogels, I. A.; Compernolle, F.; Hoornaert, G. J. *Tetrahedron* **2003**, *59*, 5481–5494.
- (a) Port, M.; Lett, R. Tetrahedron Lett. 2006, 47, 4671– 4675; (b) Mehrabani, F.; Pindur, U. J. Chem. Soc., Perkin Trans. 1 2001, 1406–1412; (c) Díaz-Ortiz, A.; De la Hoz, A.; Moreno, A.; Prieto, P.; Léon, R.; Herrero, M. A. Synlett 2002, 2037–2038; (d) Valderrama, J. A.; González, M. F.; Pessoa-Mahana, D.; Tapia, R. A.; Fillion, H.; Pautet, F.; Rodriguez, J. A.; Theoduloz, C.; Schmeda-Hirschmann, G. Bioorg. Med. Chem. 2006, 14, 5003–5011; (e) Terzidis, M.; Tsoleridis, C. A.; Stephanidou-Stephanatou, J. Tetrahedron Lett. 2005, 46, 7239–7242.
- Díaz-Ortiz, A.; Herrero, M. A.; De la Hoz, A.; Moreno, A.; Carrillo, J. R. Synlett 2006, 579–582.
- Kuroda, N.; Takahashi, Y.; Yoshinaga, K.; Mukai, C. Org. Lett. 2006, 8, 1843–1845.
- Kitagaki, S.; Katoh, K.; Ohdachi, K.; Takahashi, Y.; Shibata, D.; Mukai, C. J. Org. Chem. 2006, 71, 6908–6914.
- Chauhan, P. M. S.; Crew, A. P. A.; Jenkins, G.; Storr, R. C.; Walker, S. M.; Yelland, M. *Tetrahedron Lett.* **1990**, *31*, 1487–1490.
- (a) Barnard, E. A.; Stein, W. D. Adv. Enzymol. Relat. Sub. Biochem. 1958, 20, 51–110; (b) Boiani, M.; Gonzalez, M. Mini-Rev. Med. Chem. 2005, 5, 409–424; (c) Jin, Z. Nat. Prod. Rep. 2005, 22, 196–229.
- 11. Lipshutz, B. H. Chem. Rev. 1986, 86, 795-819.
- Herrmann, W. A. Angew. Chem., Int. Ed. 2002, 41, 1290– 1309.
- Cesar, V.; Bellemin-Laponnaz, S.; Gade, L. H. Chem. Soc. Rev. 2004, 33, 619–636.

- Nieto, I.; Cervantes-Lee, F.; Smith, J. M. Chem. Commun. 2005, 3811–3813.
- (a) Herrmann, W. A.; Kocher, C. Angew. Chem., Int. Ed. 1997, 36, 2162–2187; (b) Khramov, D. M.; Bielawski, C. W. Chem. Commun. 2005, 4958–4960; (c) Majo, V. J.; Perumal, P. T. J. Org. Chem. 1998, 63, 7136–7142; (d) Parenty, A. D. C.; Guthrie, K. M.; Song, Y.-F.; Smith, L. V.; Burgholder, E.; Cronin, L. Chem. Commun. 2006, 1194–1196.
- Selected data for compound 5. Mp 175–177 °C; ¹H NMR (300 MHz, CDCl₃): δ 3.51 (s, 3H, N–Me), 3.89 (s, 3H, 6-COOMe), 3.94 (s, 3H, 5-COOMe), 6.37–6.41 (m, 2H, C(2', 6')), 7.34–7.39 (m, 2H, C(3', 5')), 7.56 (d, J 0.75 Hz, 1H, C(7)), 8.13 (d, J 0.75 Hz, 1H, C(4)). ¹³C NMR (75 MHz, CDCl₃): δ 40.2 (N–Me), 52.77 (6-COOMe), 52.82 (5-COOMe), 110.8 (C-7), 112.7 (C-2), 114.1 (C-4'), 114.4 (C-2', 6'), 121.7 (C-4), 128.0 (C-5), 128.5 (C-6), 132.6 (C-3', 5'), 134.9 (C-7a), 142.4 (C-3a), 145.8 (C-1'), 167.65 (5-CO), 167.78 (6-CO). Anal. Calcd for C₁₈H₁₅Br₂N₃O₄ (497.138): C, 43.49; H, 3.04; N 8.45. Found: C, 43.79; H, 3.00; N 8.50. Diagnostic COLOC correlations are depicted in Figure 1.

Figure 1. Diagnostic COLOC correlations between protons and carbons (via ${}^{3}J_{C-H}$) in compound 5.

17. Selected data for compound 7. Mp 130–132 °C; ¹H NMR (300 MHz, CDCl₃): δ 3.20 (s, 3H, CONMeCO), 3.53 (s, 3H, N–Me), 6.43 (d, J 8.5 Hz, 2H, C(2', 6')), 7.37 (d, J 8.5 Hz, 2H, C(3', 5')), 7.64 (s, 1H, C(7)), 8.18 (s, 1H, C(4)). ¹³C NMR (75 MHz, CDCl₃): δ 24.2 (CONMeCO), 40.3 (N–Me), 105.7 (C-7), 113.8 (C-2), 114.4 (C-4'), 114.5 (C-2', 6') 116.4 (C-4), 127.9 (C-5), 128.2 (C-6), 132.7 (C-3', 5'), 137.2 (C-7a), 145.0 (C-3a), 145.6 (C-1'), 167.9 (5-CO, 6-CO). Anal. Calcd for C₁₇H₁₂Br₂N₄O₂ (464.111): C, 43.99; H, 2.61; N 12.07. Found: C, 43.72; H, 2.80; N 12.31.